
A revisit on the survival analysis of two popular data sets via

nonparametric and semi-parametric methods: New results with

discussion

Indranil Ghosha, Giana Maldarib and Jonathan Richards c

a Department of Mathematics and Statistics, University of North Carolina, Wilmington, NC,
USA bDepartment of Mathematics and Statistics, University of North Carolina, Wilmington,
NC, USA c Department of Mathematics and Statistics, University of North Carolina,
Wilmington, NC, USA

ARTICLE HISTORY

Compiled June 14, 2024

Received 11 December 2023; Accepted 18 April 2024

Abstract
In this article, we revisit the survival analysis of two different well-known data sets–
(i) Stanford Heart Transplant (SHT) data, and (ii) AIDS data via nonparametric
and semi-parametric methods. The novelty of this current work is manifold. For
the STH data, we compare the performance of the survival analysis is considered
via semi-parametric methods (this is new), and also explore the survival rates of
patients between recipients and non-recipients of a heart transplant to illustrate the
benefits of a heart transplant. On the other hand, we performed a survival analysis
of the AIDS data via four different estimation strategies and make a comparison
study. Such an extensive study has not been done earlier for this AIDS data to the
best of the knowledge of the authors.

KEYWORDS
Survival Analysis; Life-table; hazard Model; Stanford heart plant data;
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1. Introduction

The applications of life-table method can be found in several different aspects of hu-
man life including, but not limited to pharmaceutical industries, insurance risk mod-
eling among others. A majority of survival analysis methods focus on right censoring
since it occurs far more frequently than left censoring. The incompleteness of data
makes the conventional statistical methods inappropriate. The analysis of survival
data can be considered by any of the following three approaches—(a) nonparametric,
(b)parametric, and/or (c) semiparametric. Recently, there has been some studies in
which researchers have advocated the strategy of online updating of nonparametric
survival estimator and nonparametric survival test, see Xue et al. (2020) and the ref-
erences cited therein. However, the proposed strategy is more suitable to deal with
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massive amounts of data. Dzinza and Ngwira (2022) made a comparison study be-
tween parametric and Cox regression using HIV/AIDS survival data from a retrospec-
tive study in Malawi and established that parametric models may perform equally
well as the Cox regression. For a rigorous in depth overview on the topic of recent
statistical methods for survival analysis, we refer an enthusiastic reader a special is-
sue on this topic by the Japenese Journal of Statistics and Data Science (2021). In
the next, we discuss a brief history of the Stanford heart transplantation data and
associated methodology The Stanford Heart Transplantation Program, for details, see
Clark et al. (1971). Noticeably, the main objective in Turnbull et al. (1974) was to
assess the effect on survival of transplantation, assuming that the underlying patient
population is homogeneous. However, in Brown et al. (1973) the influence of a num-
ber of concomitant variables was analyzed via pairwise correlations. However, this
particular analysis of heart transplant survival data was first conducted by Crowley
and Hu (1977). It is considered to be one of the first survival analyses pertaining to
heart transplants to ever be conducted. The entire Stanford Heart Transplantation
Program commenced in the fall of 1967. Since then, over 900 transplants on 850+
patients have been performed and closely analyzed and monitored as a part of this
program. Of the 103 patients enrolled in the Crowley and Hu (1977) study, 69 received
transplants and four patients were declared fit enough to receive any further trans-
plants. Of those four, two were lost during the follow-up process and the other two
died. Patients were enrolled in this particular heart transplant program between 1967
and 1974. Techniques examined include the Cox and Breslow methods, in which the
simultaneous effect of several covariates which is denoted by Vn for the purpose of this
paper. The hazard function is the conditional probability of an event occurring within
a set interval divided by the width of the interval was also utilized, along with the
exponential model and the survival function. Based on the exponential model, each
patient was assumed to have a constant hazard variable that will be further explained
later in the paper. Participants in this strictly observational study were permitted to
be included only once it was determined that they were unlikely to respond to any
type of other methods of therapy. Personal and familial consent were also required.
We will be discussing the data obtained and notation used in the Crowley and Hu
(1977) paper, several techniques and methods that were introduced, and the final re-
sults of the analysis. In particular we will discuss several one sample nonparametric
methods for estimating the associated survivorship function related to this program,
including but not limited to, the Kaplan Meier estimator, Life-table (Actuarial Esti-
mator) etc.The major objective of this paper is to further examine the benefits of heart
transplants based on the data presented in Crowley and Hu (1977). Next, we provide
some useful background and history of the Stanford heart transplantation data anal-
ysis which will help the readers to find the reason as to why we are interested in this
study. A quick search on Google Scholar survival analysis of Stanford heart trans-
plant data resulted in 75200 references which justifies the fact that there is a need
to re-analyse this data set (in various pertinent perspectives). A non-exhaustive list
of such pertinent references can be cited as follows. Aitkin et al. (1983) re-analyzed
the data by modeling survival time as a function of patient covariates and transplant
status, and compare the results obtained using various parametric representations for
survival time, including Weibull, lognormal, and piecewise exponential distributions.
Pretransplant and post-transplant survival are considered separately and the effect of
transplantation on survival is examined by comparison of the separate hazard func-
tions. Storer and Crowley (1985) in a follow up paper provided some comments on the
statistical problems regarding larger societal concerns with heart transplantation. Dag
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et al. (2017) discussed the prediction regarding 1−, 5−, 9− year patient’s graft survival
following a heart transplantation surgery via the adapation of analytical models that
are based on four powerful classification algorithms (i.e., decision trees, artificial neu-
ral networks, support vector machine and logistic regression). Mancicni et al. (2021)
discussed the rate of improvement regarding survival after heart transplantation de-
spite increasing complexity. Moayedi et al. (2019) discussed and opined that overall
survival doesn’t differ between men and women after cardiac transplantation. Women
who survive to heart transplantation appear to have lower risk features than male
recipient but receive hearts from higher risk donors. In this paper, we did not include
the gender factor which can be taken up in a future article.

The rest of the paper is organized as follows. In Section 2, we discuss briefly the idea
on survival hazard rate model, and the survival function. In Section 3, we discuss in
detail the survival data from Crowley and Hu (1977) with some useful notations and
terminology used in this paper. In Section 4, we discuss the methodology used to ana-
lyze the heart transplant data. In Section 5, we provide two real-data application—one
with the expanded analysis for the Stanford heart transplantation data and another for
the survival of the AIDS data. Finally, some closing remarks are presented in Section
6.

2. Survival and Hazard Model

An alternative characterization of the distribution of T is given by the hazard function,
or instantaneous rate of occurrence of the event, defined as

limdt→0
P ((t < T ) < t+ dt| (T > t))

dt
= λ(t) (1)

The numerator of this expression is the conditional probability that the event will occur
in the interval [t, t+ dt] given that it has not occurred before, and the denominator is
the width of the interval. Dividing one by the other, the rate of event occurrence per
unit of time is obtained. Taking the limit as the width of the interval goes down to
zero, an instantaneous rate of occurrence is obtained.

The conditional probability in the numerator may be written as the ratio of the
joint probability that T is in the interval [t,t+dt] and T ≥ t to the probability of the
condition T > t. The former may be written as f(t)dt for small dt, while the latter is
S(t) by definition. Dividing by dt and passing to the limit gives the useful result

λ(t) =
f(t)

S(t)
, (2)

which is a standard definition of the hazard function. Equivalently, the rate of oc-
currence of the event at duration t equals the density of events at t, divided by the
probability of surviving to that duration without experiencing the event. Note from
the previous equation that f(t) is the derivative of S(t).

λ(t) = − d

dt
logS(t). (3)
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In this analysis, the integrated version of the hazard function is used:

λ(t) =

∫ t

0
λ(s)ds. (4)

2.1. Survival Function

The survival function has the following standard form

S(t) = P (T > t) =

∫ ∞

t
f(x)dx, (5)

which generally gives us the probability that participants would be alive just before
the duration of (t) or it can also do the opposite and give us the probability that
an event of interest has not occurred during the time frame of variable (t). For the
purposes of this analysis, the curve is represented by:

F (t) = exp {−λ(t)} . (6)

3. Stanford Heart Data: Preliminaries

For this data provided by Crowly and Hu (1977), notations are used systematically
throughout the paper. P represents the total number of participants in the study, in
this case P = 103; where as H equals the number of patients who actually received a
new heart, H = 69; C represents the total number of patients who were enrolled and
did not go through with the transplant, in this case C = 34. Among the people who
have received a transplant, let H represent the uncensored data and Hc represent the
censored data. As for the people who did not receive the heart transplantation (C),
let w be equal to the people in this sample that had uncensored data, with Cc people
with censored data. For this sample h = 45 and c = 30.

The patients acceptance date is represented by T1 while T2 represents the patients
last day being observed. With this, the survival time of patients without receiving a
heart can be obtained as T2-T1. The day of transplant, for the patients that received a
new heart, is represented by T3, where T1 ≤ T3 ≤ T2. Waiting time for patients between
acceptance and transplant date can be found byW = T3−T1. There were also a number
of covariates included in the analysis of each patient. They are represented by V0,V1,V2,
all the way up to V8. Variables considered included transplant status, age at transplant,
and three separate tissue types. T5 in the data set represents the numerical measure
of closeness of alignment between donor and recipient tissue. The survival variables
Y1, Y2, ...Ym are right censored by fixed constants t1, t2, ...tm, if the sample consists of
ordered pairs (Zi, δi), for i = 1, 2, ...m), where for each i → Zi = min(Yi, ti). Z is
measured by the minimum value between the time until an event happens, and the
time until the end of the study. The data can be represented in a more simple way
when using it in SAS and/or R programming.

In this sample, the data is right censored, meaning a patient has either died before
the study ended through a different cause, or they withdrew from the study before the
ending date, or the study has ended and the patient is still alive. In this sample, many
patients didn’t come back for follow up check up and their records were lost along the
way of the study. The censored data is represented by
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δi = 1 if Yi ≤ ti (uncensored)

= 0 if Yi > ti (censored).
(7)

4. Methodology

4.1. Actuarial Table

Survival analysis can be examined using different formulas when observing data sets
based on sample size, truncation, and censored data. When the random variables
Y1, Y2...Ym are independent, evenly distributed and censored, with survival function
S and probability density function f, we use a method called the cohort life table
method. The m patients alive are recorded of their survival time or time to censor,
within a fixed disjoint interval.

ηj = [uj−1, uj), j = 1, 2, 3, ...k + 1 such that u0 = 0 and uk+1 = ∞ (8)

From here, the different notations for the j-th interval ηj = [uj−1, uj) can be written:
Nj is number at risk in ηj ,
Dj is the number of deaths or observed failures in ηj ,
Wj is the number censored in ηj .

With these definitions, we know that N1 = n, meaning the whole sample is at risk
in the j − 1-th interval. The life table chart shows the survival rate of a person in a
given interval, which is also called the conditional probability structure(Smith 2002).
These probabilities across ηj are represented by:

pj = P (Y > uj |Y > uj−1) =
S(uj)

S(uj−1)
, (9)

where S(uj) = p1p2p3...pj . To estimate pj , a binomial estimator is used, is given by

p̂j = 1− number of dying in Ij
number with the potential to die in Ij

(10)

or equivalently,

p̂j = 1− Dj

N ′
j

. (11)

For the actuarial estimate of pj , the effective number at risk, N ′
j needs to be defined so

that the number at risk in a given interval can be assumed to be censored uniformly
and is given by

N ′
j = Nj −

1

2
Wj . (12)

With the data and Eqs. (8)-(12), estimates can be derived for the life table. To
further complete the table, the standard error of each estimate should be found, by

17



Asian European Journal of Probability and StatisticsGhosha, Maldarib and Richardsc

the use of Greenwood’s (1926) formula. This formula is also used in the Kaplan Meier
product limit estimator. The standard error of the life table estimate(s) are given by

S.E(Ŝ(uj) = Ŝ(uj)

√√√√ j∑
i=1

q̂i
p̂iN ′

i

, j = 1, 2, 3, ...k + 1, (13)

where q̂i = 1− p̂i.

With this information, a life-table can be constructed and analyzed to see the sur-
vival rate of patients who received a new heart over a certain amount of time measured
in days (given in the Appendix). Next, We will consider several different strategies.

4.2. Kaplan-Meier Estimator

The Kaplan-Meier product limit (PL) method is a special case of the lifetable tech-
nique. It estimates the probability of surviving longer than a given time t, i.e., S(t).
The estimate is the product of a series of estimated conditional probabilities. For
example, the probability of surviving longer than k years is estimated as,

P̂ (T > k) = Ŝ(k) =

m∏
i=1

pi,

where pm denotes the proportion of patients surviving the m-th year after they have
survived m− 1 years. An important assumption of the Kaplan-Meier method is that
the probability of a censored observation is independent of the actual survival time.
The Kaplan-Meier method is commonly used by medical researchers and epidemiolo-
gists. Recently, it was applied to health economics by Fenn et al. (1995). The authors
advocate the use of survival analysis, particularly the Kaplan-Meier method in the
economic evaluation of cost-effectiveness of treatment where censored cost data are
present. Censored data arise when the course of treatment extends beyond the end of
the clinical trial period and when patients withdraw from the trial for reasons uncon-
nected with the treatment under study. The Kaplan-Meier estimator is probably the
most popular approach. It may be justified from several perspectives which are listed
below:

• product limit estimator
• likelihood justification
• redistribute to the right estimator

This estimates the survival function S, that has right censored data. The difference
between this estimator and the actuarial method, is that the endpoints are not fixed
and are created by the spaces between the observed data points. Equation [7] is used
for this method to define δi, to show which data points are censored or not. Intervals
are created by dividing

(
0, Z(n)

)
into disjoint intervals

Ij = (Z(j−1), Z(j)], j = 1, 2, 3, ...n such that Z0 = 0. (14)

The risk set at time u denoted by R(u) indicates the set of subjects who are still
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alive and observed at time u−, which is a time right before u. Next, revised/redefined
notations can be written in terms of the PL-estimator. We begin our discussion by
introducing the following notations and terminologies listed below:

• Nj the number at risk is number of elements in R(Z(j));
• Dj is the number of deaths observed in Z(j) (0 or 1);
• pj is the conditional probability P (surviving through Ij |alive at start of Ij) .

Next, note that when u is fixed and there are ties within the sample, the right censored
data is denoted by (

Z ′
(1), δ

′
(1)), (Z

′
(2), δ

′
(2)), ..., (Z

′
(k), δ

′
(k)

)
, (15)

consequently the Kaplan-Meier product-limit estimator of S will be

Ŝ(u) =
∏

j:Z′
(j)≤u

(
1− Dj

Nj

)δ′(j)

. (16)

The standard error of the survival estimator can be found by using Greenwood(1926)’s
formula . We describe it below. Notice that we can rewrite Eq. (16) as

Ŝ(u) =
∏

j:Z′
(j)≤u

(
1− θ̂j

)δ′(j)
, (17)

where θ̂j =
Dj

Nj
. Next, since θ̂j are basically binomial proportions, we may apply stan-

dard likelihood theory to establish that θ̂j is approximately normal with mean θj and

var(θ̂j) ≡ θ̂j(1−θ̂j)
Nj

. Also, without loss of generality, we can say that for large sam-

ples, θ̂j are independent. Consequently, we can estimate its variance using the delta

method. Next, we consider the delta method in brief (and associated Greenwood’s
formula to compute the estimated variance (and subsequently the standard error) of
the survival function) as follows:

• delta method: If X is normal with mean µ and variance σ2, then for a one-to-
one function g, g(X) is approximately normally distributed with mean g(µ) and
variance [g′(µ)]2σ2.

• Next, instead of dealing with Ŝ(u) directly, we consider the logarithm of it, given
by

log
(
Ŝ(u)

)
=

∑
j:Z′

(j)≤u

log
(
1− θ̂j

)
.

Thus, by approximate independence of the θ̂j ’s
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var
(
log
[
Ŝ(u)

])
=

∑
j:Z′

(j)≤u

var
(
log
(
1− θ̂j

))

=
∑

j:Z′
(j)≤u

(
1

1− θ̂j

)2

var
(
θ̂j

)

=
∑

j:Z′
(j)≤u

(
1

1− θ̂j

)2 θ̂j

(
1− θ̂j

)
Nj

=
∑

j:Z′
(j)≤u

θ̂j(
1− θ̂j

)
Nj

=
∑

j:Z′
(j)≤u

Dj

(Nj −Dj)Nj
.

Next, since Ŝ(u) = exp
[
log
(
Ŝ(u)

)]
, we can write

var
(
Ŝ(u)

)
=

[
Ŝ(u)

]2
var

(
log
[
Ŝ(u)

])
=

[
Ŝ(u)

]2 ∑
j:Z′

(j)≤u

Dj

(Nj −Dj)Nj

 .

Consequently, the estimated standard error of Ŝ(u) will be

√
̂

var
(
Ŝ(u)

)
. The Kaplan-

Meier curves can be obtained either in SAS (PROC LIFETEST), or in R ( Survival

package) and also in Mathematica software as well. We have utilized SAS to analyze
the data and subsequently all other associated computations in this paper.

4.3. Cox Regression

Cox regression, also known as proportional hazards regression, is a type of model as-
sumes a parametric form for the effects of the explanatory variables, but allows an
unspecified form for the underlying survivor function. In public health research, it is
often of interest to know whether a certain personal characteristic is related to the
occurrence of a certain health-related event. For example, are cigarette smoking, ele-
vated cholesterol value, and family history of heart disease related to the development
of cardiovascular disease? In this case, cigarette smoking, cholesterol value, and family
history of heart disease are referred to as risk factors (or in a clinical setting, prognos-
tic factors), or covariates. In most public health studies, data on many risk factors are
collected and therefore the identification of the most significant risk factors becomes
an important task. In addition to examining individually each variable’s relationship
to the length of disease-free time, survival, or remission, multivariate regression anal-
ysis is necessary to control for confounding factors. Cox’s (9) regression model has
been the most widely used method in survival data analysis regardless of whether the
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survival time is discrete or continuous and whether there is censoring. Though the
Cox model is introduced initially in the framework of proportional hazards, the model
easily can be extended to cases of non-proportional hazard functions. Some examples
are models that include covariates that are time dependent (i.e. their values change
over the follow-up period) and those that have multiple events for some individuals.
How do we know if the assumption of proportional hazards holds? An easy way to
check the hazards assumption is to plot the cumulative hazard functions.

It is used in the analysis of survival data to explain the effect of explanatory variables
on hazard rates. This model can be written as:

h(t|z) = h0(t) exp
(
zTβ

)
, (18)

where h(t) is the expected hazard time and h0(t) is the baseline function for the model,
z is a m×1 vector of covariates such as treatment indicators, and β is a m×1 vector of
regression coefficients. Obviously, h (t|z = 0) = h0(t). Therefore, h0(t) is often called
the baseline hazard function. It may be interpreted as the hazard function for the
population of subjects with z = 0. The baseline hazard function in Eq. (15) can take
any shape as a function of t. This is the nonparametric part of the model and z is
the parametric part of the model. Consequently, Coxs’ proportional hazards model is
a semi parametric model.

This model can be used to calculate the likelihood ratio, which finds a goodness
of fit between the null hypothesis and the alternative hypothesis. Cox regression ex-
amines the probability and effects between two or more groups within a sample. If
the proportional hazards assumption does not hold, one remedy is to stratify the
data into subgroups and apply the model for each stratum. Note that the hazards
are non-proportional because the baseline hazards may be different between strata. A
drawback of this approach is that the estimate of the effect of the stratifying variable
can not be calculated. Non-proportional hazards also occur when some covariates are
time dependent. For example, status of cigarette smoking may change during the study
period and therefore is time dependent. The setup of the partial likelihood functions
of the time-independent covariates is still applicable. In this case, the covariates are
indexed by time. The risk for survival is allowed to vary with time. The model takes
into account the recent information about the covariates, though it does not model the
changes that occurred in the variable over the observation period. This is in contrast
to the time-independent model, which only includes baseline information.

5. Real data application

5.1. Expanded Analysis of the Heart transplantation data

Throughout this analysis, it was found that waiting time was not a key variable and
the efficacy of surgery was not strengthened by the variable of calendar time. Further
analysis into these variables justified this point because of the strength of all of the
other variables(age at transplant, previous surgery, etc.) when expanded analysis was
conducted to include participants who did not receive a heart transplant. Instead, the
mismatch score, in terms of HL-A typing, was a more valuable variable because it
served as an indicator that typing did in fact reduce the chances of acute rejection and
therefore increasing the odds of survival. The risk factor of age at acceptance could
also serve as a significant variable in this study. In this analysis, it was found that
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age at acceptance only showed promise as a significant addition to the model because
of the accompanying variable of age at transplant as a post-transplant risk and the
correlation between the two. The variables are analyzed in two separate models.

The first model explores the results of the explanatory variables age at acceptance
(dependent variable) and transplant status (censoring variable). With this model it
was found that the risk of age at acceptance as a pre-transplant risk factor increases
dramatically (p = 0.0289) Also, based on this model there is a slight decrease in
transplant risk status with (p = 0.8261, therefore not significant)

The second model surveyed three separate explanatory variables; transplant status,
transplant age and mismatch score. (Four participants did not have mismatch values
and were therefore excluded) The variables transplant age and mismatch score are both
time dependent. Results concluded that transplant age was statistically significant
(p = 0.0143), meaning participants who received heart transplants at younger ages
experienced longer lives. Also, mismatch score was found to have minimal effect on
survival (p = 0.1121).

5.2. Survival data analysis of the AIDS data

Our example deals with the ribavirin clinical trial in AIDS patients given Table 1
of Lipsitz and Parzen (1996). This data set contains N = 36 eligible patients, each
having a maximum of nj = 3 blood samples. The observed response for the kt-h blood
sample from patient j is the minimum of number of days to virus positivity and the
censoring time. Next, let us consider some useful preliminaries before considering a
specific model for the data.

If Tik be the failure time for the k-th member of the cluster i, with i = 1, 2, · · · , N ;
k = 1, 2, · · · , ni. Assuming that Tik follows a Cox proportional hazard model (see,
Cox (1972), then the hazard function for Tik at time t > 0, conditional on the p × 1
covariate vector at time t, Zik(t) will be

λ (t|Zik(t)) = λ0(t) exp

(
βZik(t))

)
,

where λ0(t) is an arbitrary hazard function and β is a p × 1 vector of regression
coefficients. Wei et al. (1989) had fitted separate treatment effects for each of weeks 4,
8, and 12; that is, for the k-th blood sample from patient j, they assumed the baseline
hazard function for Tik to be of the following form

λ (t|Zik(t)) = λk0(t) exp

(
βk1δ [TRTj = 2] + βk2δ [TRTj = 3]

)
,

where βk1 is the log-relative risk for low dose versus placebo at time k1, and βk2 the
log-relative risk for high dose versus placebo at time k2, and δ is an indicator function.
For the null hypothesisH0 : β11 = β12 = β13; the associated p-value = 0.2638, therefore
we fail to reject the null hypothesis. A similar conclusion was independently obtained
in Wei et al. (1989). Consequently, for simplicity, we consider the following model:
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Table 1. Survival analysis of the AIDS data

Methods of estimation β̂1 β̂2 Ŝt

Estimate SE Estimate SE Estimate SE
Kaplan Meier -0.8539 0.3112 -0.3926 0.2783 0.1385 0.3629
Bootstrap -0.7543 0.1816 0.3598 -0.2938 0.1782 0.1563
Jackknife -0.7647 0.3783 1.932 -0.3124 0.2346 0.1745
K-step repeated Jackknife -0.7549 0.2541 -0.2842 0.1933 0.5127 0.1689

λ (t|Zik(t)) = λk0(t) exp

(
β1δ [TRTj = 2] + β2δ [TRTj = 3]

)
,

which assumes a common baseline hazard λk0(t) = λ0(t). Next, to estimate β1, β2 and
the associated survival function, we consider the Kaplan Meier, the Bootstrap, the
Jackknife and the K-repeated jackknifing estimation strategies. For pertinent details
each of the last three estimation methods, see Adewara and Mbata (2014) and the
references cited therein. From the above Table 1, one may observe the following:

• In comparison among the four different methods, the bootstrap procedure ap-
pears to be most efficient (in the sense of minimum value of the MSE for all
the estimands. However, we can not make a general comment that among these
methods adopted in survival analysis, Bootstrap will always perform uniformly
better.

• The K-repeated jackknife procedure appears to be performing second best for
this particular data.

• It must be mentioned that estimates under the Jackknife method has been in-
dependently obtained by Lipsitz and Parzen (1996) but only for the population
quantities β1, β2. Our estimates are very close to what they have obtained.

6. Conclusion

In this paper we studied in more details the Stanford Heart Transplant survival data
via several nonparametric and semi-parametric methods. Based on the analysis done
in this paper, it can be concluded that after one year, the survival rate of patients
that received heart transplants decreased significantly. Based on the Kaplan-Meier
test, the results were equally as unimpressive, as the average lifespan for individuals
receiving a heart transplant was approximately a year and a half. Both the life-table
and product-limit estimator graphs agreed with each other by showing survival rates
that fluctuated between 0.2 and 0.4 over 1000 days, after which the survival rate begins
to stabilize and the hazard rate generally decreases. These results can be attributed to
a number of circumstances which were stated earlier. Extenuating circumstances do
have to be taken into consideration, such as whether the patient had received any type
of transplant prior to this study. It was also found that younger patients experienced
longer survival rates through transplantation once a suitable heart was found for them.
To conclude, the transplant program that begin in 1967 had many positive impacts on
the survival rates of patients enrolled in the study. Even though the rates weren’t long
term, the results were positive for younger patients. It is safe to say that the survey
made in this article are far from complete. Survival analysis with incomplete patient
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data will involve a more complex approach and associated methodologies will involve
a careful analysis under both the parametric as well as nonparametric set-up. We plan
to take up this matter in a separate article. In addition, in this paper, as a separate
study, we have also performed a survival analysis due to Lipsitz and Parzen (1996)
via various estimation methods. It is observed that among the four different methods
adopted, the bootstrap appears to be most efficient. However, we can not recommend
that the bootstrap method will be uniformly better in other situations.

Acknowledgement

The authors would like to thank the anonymous reviewers and the Editors on an earlier
version of the manuscript which has significantly improved the current version.

References

[1] Xue, Y., Wang, H., Yan, J. and Schifano, E.D., 2020. An online updating approach for
testing the proportional hazards assumption with streams of survival data. Biometrics,
76(1), pp.171-182.

[2] Dzinza, R. and Ngwira, A., 2022. Comparing parametric and Cox regression models
using HIV/AIDS survival data from a retrospective study in Ntcheu district in Malawi.
Journal of Public Health Research, 11(3), p.22799036221125328.

[3] Ke, S., Fang, Q., Lan, J., Qiao, N., Zhang, X., Xie, C., & Fan, Y., 2023. Survival times
of HIV/AIDS in different AIDS Diagnostic and Treatment Guidelines from 2006 to 2020
in Liuzhou, China. BMC Public Health, 23(1), 1745.

[4] Clark, D.A., Stinson, E.B., Griepp, R.B., Schroeder, J.S., Shumway, N.E., and Harrison,
D.C., 1971. Cardiac Transplantation in Man. VI. Prognosis of Patients Selected for
Cardiac Transplantation. Annals of Internal Medicine, 75, 15-21.

[5] Turnbull, B.W., Brown, B.W., Jr., and Hu, M., 1974. Survivorship Analysis of Heart
Transplantation Data. Journal of the American Statistical Association, 69, 74-80.

[6] Mantel, N., and Byar, D.P., 1974. Evaluation of Response-Time Data Involving Transient
States: An Illustration Using Heart-Transplant Data. Journal of the American Statistical
Association, 69, 81-86.

[7] Brown, B.W., Jr., Hollander, M., and Korwar, R.M., 1973. Nonparametric Tests of In-
dependence for Censored data with Applications to Heart Transplant Studies. Paper
presented at the Florida State University Conference on Reliability and Biometry.

[8] Crowley, J., and Hu, M., 1977. Covariance Analysis of Heart Transplant Survival Data.
Journal of the American Statistical Association, 72, 27-36.

[9] Aitkin, M., Laird, N., & Francis, B., 1983. A reanalysis of the Stanford heart transplant
data. Journal of the American Statistical Association, 78(382), 264-274.

[10] Crowley, J. and Storer, B.E., 1983. A reanalysis of the Stanford heart transplant data:
comment. Journal of the American Statistical Association, 78(382), pp.277-281.

[11] Dag, A., Oztekin, A., Yucel, A., Bulur, S. and Megahed, F.M., 2017. Predicting heart
transplantation outcomes through data analytics. Decision Support Systems, 94, pp.42-
52.

[12] Mancini, D., Gibson, G. T., & Rangasamy, S., 2021. Improving survival after heart
transplantation despite increasing complexity. European Heart Journal, 42(48), 4944-
4946.

[13] Moayedi, Y., Fan, C. P. S., Cherikh, W. S., Stehlik, J., Teuteberg, J. J., Ross, H. J., &
Khush, K. K., 2019. Survival outcomes after heart transplantation: does recipient sex
matter?. Circulation: Heart Failure, 12(10), e006218.

24



Asian European Journal of Probability and StatisticsGhosha, Maldarib and Richardsc

[14] Lipsitz, S. R., & Parzen, M., 1996. A jackknife estimator of variance for Cox regression
for correlated survival data. Biometrics, 291–298.

[15] Smith, J. P., 2002. Analysis of Failure and Survival Data.Chapman & Hall/CRC.
[16] Greenwood, M., 1926. The Natural Duration of Cancer. Reports of Public Health and

Related Subjects, 33, 1-26. HMSO, London.
[17] Fenn, P., McGuire, A., Phillips, V., Backhouse, M., & Jones, D., 1995. The analysis of

censored treatment cost data in economic evaluation. Medical Care, 33(8), 851–863.
[18] Kaplan, E.L., and Meier, P., 1958. Non parametric estimation from incomplete observa-

tions. Journal of the American Statistical Association, 53, 448–457.
[19] Cox, D. R., 1972. Regression models and life tables (with discussion). Journal of the

Royal Statistical Society, Series B, 34, 187–220.
[20] Wei, J., Hou, J., Su, B., Jiang, T., Guo, C., Wang, W., Zhang, Y., Chang, B., Wu, H. and

Zhang, T. (2020). The prevalence of Frascati-criteria-based HIV-associated neurocogni-
tive disorder (HAND) in HIV-infected adults: a systematic review and meta-analysis.
Frontiers in neurology, 11, p.581346

[21] Adewara, J.A., and Mbata, U.A. (2014). Survival Estimation Using Bootstrap, Jackknife
and K-Repeated Jackknife Methods. Journal of Modern Applied Statistical Methods:
Vol. 13 : Iss. 2 , Article 15. DOI: 10.22237/jmasm/1414815240.

Appendix

25



Asian European Journal of Probability and StatisticsGhosha, Maldarib and Richardsc

Figure 1. Brief summary of the SAS output related to product limit survival estimates for the Stanford heart

transplantation data along wit the Kaplan-Meier estimate.26
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Figure 2. Brief summary of the SAS output for the Cox-Ph regression.
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